Space Weather Update: 12/03/2015
By Spaceweather.com, 12/03/2015
INTERPLANETARY SPACECRAFT TO BUZZ EARTH ON DEC. 3RD: Japan’s Hayabasa 2 spacecraft, on a six year mission to catch and sample an asteroid, will fly past Earth on Dec. 3rd. Earth’s gravity will slingshot the spacecraft toward its target, 162173 Ryugu, which Hayabasa 2 is expected to reach in July 2018. This animation from JAXA (the Japanese space agency) previews the flyby:
Many readers have never heard of Hayabasa 2. It is an amazing mission. After the spacecraft reaches Ryugu in 2018, it will orbit the asteroid for a year and a half. During that time, Hayabasa 2 will deploy four landers and drop a copper impactor toblow a hole in the asteroid’s side. Hayabasa 2 itself will touch down on the asteroid, briefly, at least once to collect samples excavated by the impactor. In Dec. 2019, the spacecraft will leave the asteroid and use its ion engines to return to Earth, carrying precious samples of Ryugu. Ambitious? Yes. But if Hayabasa 2 completes even a fraction if its mission, it will be a success.
The spacecraft is small (mass: 590 kg, dimensions: 2 x 1.6 x 1.25 meters), so when it flies by Earth it will not be very bright–definitely invisible to the naked eye. “I expect it will be about 13th magnitude at best when it appears low in the west-northwest sky after evening twilight ends across the USA,” says Richard Alan Keen of the University of Colorado, who observed a similar flyby of the Rosetta spacecraft in 2005, and bases his brightness estimate on that. Another experienced observer, Bill Gray of Project Pluto, estimates that the magnitude could reach +11. Either way, it is still very dim.
Observers with telescopes in Alaska, Hawaii and Japan are favored with the best views of the tiny spacecraft as it passes over the Pacific during closest approach. Ephemerides for specific locations may be obtained on the JPL HORIZONSwebsite. Additional charts and a ground track are available in Japanese at this URL.
This just in: On Nov. 26th, at a distance of 3 million km, Hayabasa 2 took this picture of the Earth-Moon system:
According to JAXA analysts, you can see the Australian continent on the right, the Eurasian continent covered by clouds on the left, and the white vertical areas between them are clouds over the equator. Better views are expected as Hayabasa approaches Earth in the hours ahead.
Realtime Space Weather Photo Gallery
SOUTHERN LIGHTS: It doen’t feel like aurora season in New Zealand. “Summer is coming and it is getting warm,” says southern photographer Taichi Nakamura. “Darker night hours are rapidly shrinking with only 5 hours at most between twilights.” Nevertheless, during that narrow window of balmy darkness on Dec. 1, the auroras appeared:
“The subtle glow of Southern Lights appeared at midnight during super low tide at St. Clair beach in Dunedin,” says Nakamura. “The iconic pier at the beach got washed away by Mother Nature a while ago. What remains still stands strong.”
The display was caused by a solar wind stream, which hit Earth’s magnetic field on Nov. 30th. The impact caused a G1-class geomagnetic storm and auroras around both poles. NOAA forecasters estimate a waning 25% chance of polar geomagnetic storms on Dec. 2nd as Earth slowly exits the solar wind stream. Aurora alerts: textor voice
Realtime Noctilucent Cloud Photo Gallery
All Sky Fireball Network
Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA’s Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth’s atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.
On Dec. 3, 2015, the network reported 45 fireballs.
(38 sporadics, 3 Geminids, 2 November omega Orionids, 1 Quadrantid, 1 Puppids-Velid)
In this diagram of the inner solar system, all of the fireball orbits intersect at a single point–Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]
Near Earth Asteroids
Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.
On December 3, 2015 there were potentially hazardous asteroids.
Recent & Upcoming Earth-asteroid encounters:Asteroid
Date(UT)
Miss Distance
Size
Nov 29
48.8 LD
2.2 km
Dec 1
54.1 LD
1.1 km
Dec 1
8.8 LD
22 m
Dec 6
7.5 LD
26 m
Dec 7
10.8 LD
86 m
Dec 8
9.2 LD
80 m
Dec 8
3.3 LD
39 m
Dec 11
10.9 LD
1.1 km
Dec 24
9.7 LD
24 m
Dec 24
28.4 LD
1.8 km
Dec 29
22.8 LD
1.5 km
Jan 2
55.4 LD
1.1 km
Jan 6
12.6 LD
410 m
Jan 22
60.9 LD
1.7 km
Jan 23
74.4 LD
1.5 km
Jan 28
5.8 LD
15 m
Notes: LD means “Lunar Distance.” 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.
Cosmic Rays in the Atmosphere
Situation Report — Oct. 30, 2015Stratospheric Radiation (+37o N)
Cosmic ray levels are elevated(+6.1% above the Space Age median). The trend is flat. Cosmic ray levels have increased +0% in the past month.
Sept. 06: 4.14 uSv/hr (414 uRad/hr)
Sept. 12: 4.09 uSv/hr (409 uRad/hr)
Sept. 23: 4.12 uSv/hr (412 uRad/hr)
Sept. 25: 4.16 uSv/hr (416 uRad/hr)
Sept. 27: 4.13 uSv/hr (413 uRad/hr)
Oct. 11: 4.02 uSv/hr (402 uRad/hr)
Oct. 22: 4.11 uSv/hr (411 uRad/hr)
These measurements are based on regular space weather balloon flights: learn more.
Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly “space weather balloons” to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly “down to Earth” form of space weather. Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes. Our measurements show that someone flying back and forth across the continental USA, just once, can absorb as much ionizing radiation as 2 to 5 dental X-rays. Here is the data from our latest flight, Oct. 22nd:
Radiation levels peak at the entrance to the stratosphere in a broad region called the “Pfotzer Maximum.” This peak is named after physicist George Pfotzer who discovered it using balloons and Geiger tubes in the 1930s. Radiation levels there are more than 80x sea level.
Note that the bottom of the Pfotzer Maximim is near 55,000 ft. This means that some high-flying aircraft are not far from the zone of maximum radiation. Indeed, according to the Oct 22th measurements, a plane flying at 45,000 feet is exposed to 2.79 uSv/hr. At that rate, a passenger would absorb about one dental X-ray’s worth of radiation in about 5 hours.
The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.
Current Conditions
Solar wind
speed: 390.0 km/sec
density: 3.3 protons/cm3
explanation | more data
Updated: Today at 1518 UTX-ray Solar Flares
6-hr max: B2 0959 UT Dec03
24-hr: C1 0628 UT Dec03
explanation | more data
Updated: Today at: 1500 UTDaily Sun: 03 Dec 15Both of these sunspots are in decay, and the face of the sun is almost blank. . Credit: SDO/HMI
Sunspot number: 26
What is the sunspot number?
Updated 03 Dec 2015
Spotless Days
Current Stretch: 0 days
2015 total: 0 days (0%)
2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)
Updated 03 Dec 2015
The Radio Sun
10.7 cm flux: 95 sfu
explanation | more data
Updated 03 Dec 2015
Current Auroral Oval:
Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 0 quiet
24-hr max: Kp= 2 quiet
explanation | more data
Interplanetary Mag. Field
Btotal: 5.8 nT
Bz: 2 nT south
explanation | more data
Updated: Today at 1529 UTCoronal Holes: 03 Dec 15
Solar wind flowing from this broad coronal hole could reach Earth as early as Dec. 7th. Credit: SDO/AIA.Noctilucent Clouds The southern season for noctilucent clouds is about to begin. Monitor the daily daisies, below, from NASA’s AIM spacecraft for the first wisps of electric blue above Antarctica.
Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 12-02-2015 20:55:02
SPACE WEATHER
NOAA Forecasts
Updated at: 2015 Dec 02 2200 UTC
FLARE
0-24 hr
24-48 hr
CLASS M
05 %
05 %
CLASS X
01 %
01 %
Geomagnetic Storms:
Probabilities for significant disturbances in Earth’s magnetic field are given for three activity levels: active, minor storm, severe stormUpdated at: 2015 Dec 02 2200 UTCMid-latitudes
0-24 hr
24-48 hr
ACTIVE
10 %
15 %
MINOR
01 %
05 %
SEVERE
01 %
01 %
High latitudes
0-24 hr
24-48 hr
ACTIVE
15 %
20 %
MINOR
15 %
30 %
SEVERE
15 %
20 %